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The Primacy of Spatial Context in the Neural Representation
of Events

Jessica Robin, “Bradley R. Buchsbaum, and ““Morris Moscovitch
Psychology Department, University of Toronto, Toronto, Ontario M5S 3G3, Canada, and Rotman Research Institute, Baycrest Health Sciences, Toronto,
Ontario M6A 2E1, Canada

Some theories of episodic memory hypothesize that spatial context plays a fundamental role in episodic memory, acting as a scaffold on
which episodes are constructed. A prediction based on this hypothesis is that spatial context should play a primary role in the neural
representation of an event. To test this hypothesis in humans, male and female participants imagined events, composed of familiar
locations, people, and objects, during an fMRI scan. We used multivoxel pattern analysis to determine the neural areas in which events
could be discriminated based on each feature. We found that events could be discriminated according to their location in areas through-
out the autobiographical memory network, including the parahippocampal cortex and posterior hippocampus, retrosplenial cortex,
posterior cingulate cortex, precuneus, and medial prefrontal cortex. Events were also discriminable based on person and object features,
but in fewer regions. Comparing classifier performance in regions involved in memory for scenes and events demonstrated that the
location of an event was more accurately classified than the person or object involved. These results support theories that suggest that
spatial context is a prominent defining feature of episodic memory.
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Remembered and imagined events are complex, consisting of many elements, including people, objects, and locations. In this
study, we sought to determine how these types of elements differentially contribute to how the brain represents an event. Partic-
ipants imagined events consisting of familiar locations, people, and objects (e.g., kitchen, mom, umbrella) while their brain
activity was recorded with fMRI. We found that the neural patterns of activity in brain regions associated with spatial and episodic
memory could distinguish events based on their location, and to some extent, based on the people and objects involved. These

ignificance Statement

results suggest that the spatial context of an event plays an important role in how an event is represented in the brain.

J

Introduction

Spatial context is a defining property of episodic memory, distin-
guishing it from semantic memory (Tulving, 1972, 2002). Spatial
context contributes to the detail richness of remembered and
imagined autobiographical events, suggesting that it may play a
scaffolding role in the representation of events in memory (Ar-
noldetal.,2011; de Vito etal., 2012; Robin and Moscovitch, 2014,
2017; Robin et al., 2016; Sheldon and Chu, 2016; Hebscher et al.,
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2017). Some studies, however, have found that other familiar ele-
ments, such as people and objects, contribute equally to the qualities
of episodic memory and imagination (D’Argembeau and Van der
Linden, 2012; McLelland et al., 2015; Hebscher et al., 2017).
Scenes, the canonical type of spatial context, engage brain
areas associated with autobiographical memory and imagination
(Hassabis et al., 2007; Spreng et al., 2009; Zeidman et al., 2015;
Hodgetts et al., 2016). Scene processing typically results in activa-
tion in a posterior network of regions including the parahippocam-
pal gyrus, retrosplenial cortex, precuneus, posterior cingulate cortex,
and the hippocampus (Epstein and Kanwisher, 1998; Epstein et
al., 2007; Zeidman et al., 2015; Hodgetts et al., 2016). These re-
gions are also active when recalling the spatial context of a mem-
ory for an item or event (Burgess et al., 2001; Kumaran and
Maguire, 2005; Hassabis et al., 2007; Bar et al., 2008; Szpunar et
al., 2009; Gilmore et al., 2015). These scene-related regions are
part of the autobiographical memory and imagination networks
(Maguire and Mummery, 1999; Addis et al., 2004, 2007, 2009;
Svoboda et al., 2006; Cabeza and St Jacques, 2007; Hassabis et al.,
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2007; Szpunar et al., 2007; Spreng et al., 2009; Spreng and Grady,
2010; Schacter et al., 2012; Rugg and Vilberg, 2013).

Does this overlap of scene and autobiographical memory re-
gions suggest that representations of spatial context are inherent
in the representations of episodic memory? Higher hippocampal
pattern similarity for events with similar spatial contexts suggests
that the hippocampus represents the spatial context of memories
(Chadwick et al., 2011; Kyle et al., 2015b; Nielson et al., 2015;
Ritchey et al., 2015; Milivojevic et al., 2016). Studies examining
whole-brain activity, however, indicate that more posterior neo-
cortical regions, including the parahippocampal, retrosplenial,
and posterior cingulate cortices also represent spatial context
(Hannula et al., 2013; Staresina et al., 2013; Szpunar et al., 2014).
Many of these studies did not directly compare the contributions
of spatial context to the representation of episodic memory with
those of other event elements.

We investigated how spatial context is represented in memory
for complex events compared with other event features: people
and objects. By varying all three features, we were able to deter-
mine which neural areas are associated with spatial context and
directly compare the effects of spatial context to the other feature
types. If events involving the same location resemble one another
more than events that share other features, it would support the
hypothesis that spatial context plays an especially important role
in determining the neural representation of an event, consistent
with scene construction and related theories (O’Keefe and Nadel,
1978; Nadel, 1991; Burgess et al., 2002; Hassabis and Maguire,
2007, 2009; Maguire and Mullally, 2013; Nadel and Peterson,
2013). A second question is whether spatial context is represented
primarily in the hippocampus or by the posterior scene network.
By examining activation patterns in the hippocampus and through-
out the brain, we will determine whether the effects of spatial
context on episodic memory are mediated via the neocortical
posterior scene network or by the hippocampus directly.

Materials and Methods

Participants

Nineteen healthy young adults participated in the study. One participant
was excluded from analyses due to excessive motion in the scanner, re-
sulting in 18 participants (8 female, 10 male; mean age, 25.55; age range,
18-29 years). All participants were right handed, fluent in English, and
had completed at least 12 years of formal education (mean years of edu-
cation, 17.94; SD, 2.69). All had normal or corrected-to-normal vision,
no hearing problems, and no history of psychological or neurological
illness or injury. Participants provided informed consent before partici-
pating in the study, in accordance with the Office of Research Ethics at
the Rotman Research Institute at Baycrest Health Sciences, and were
provided monetary compensation for their participation.

Experimental design and statistical analyses

Experimental design

Before participating in the study, participants filled out an on-line ques-
tionnaire, providing the names of nine well known people from their
lives (three family members, three friends, three coworkers/colleagues)
and nine well known locations (three rooms in their house or a well
known house, three locations relating to school/work, three other
locations frequently visited; e.g., stores, gyms, theaters, subway sta-
tions). These highly familiar real-world cues were used as stimuli in
the experiment.

Study procedure. Testing took place in a single session of ~2.5 h. Before
the scanning session, participants were given detailed instructions for the
study procedures and completed six practice trials using a subset of cues
that were not used again in the study, and had the opportunity to ask
questions and receive feedback from the experimenter.
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During the scanning session, participants completed six runs of the
main experimental task. In each run, participants completed 27 event
imagination trials. On each trial, three cues were presented to the partic-
ipant, who was instructed to imagine the cued features interacting in a
life-like event involving themselves, and to picture as many details as
possible about the event for the 8 s duration of the trial. The three cues
always consisted of the names of one person, one location, and one
object. Three person and location cues were randomly selected from each
category of the participant’s answers to the on-line questionnaire. The
three object cues were randomly selected from a standard list of nine
highly imageable objects, used across all participants. Participants were
instructed to imagine novel events, distinct from the events on other
trials and from any existing memories. Participants were instructed to
imagine each feature consistently across trials (i.e., the same specific
locations, the same specific objects). Participants pressed a key to indi-
cate when they had an event in mind. After each event, participants rated
the vividness of the imagined event on a scale from 1 to 4 (1, not vivid; 4,
extremely vivid). Over the 27 trials, participants imagined events based
on all combinations of the nine cues (3 locations X 3 persons X 3 ob-
jects). Each trial was separated by a jittered active fixation (5-7 s in
duration), which randomly displayed an arrow pointing either left or
right. Participants pressed a key corresponding to the direction of the
arrow and then were instructed to focus on the arrow for the remainder
of the fixation.

On subsequent runs (2-5), participants were shown the same 27 cue
sets in a random order and were asked to remember the events that they
imagined in the first run, and revisualize them for the duration of the 8 s
trial. Once again, they pressed a key to indicate when an event was in
mind, and made a vividness rating after every event. Across runs, the order of
the cues on the screen varied, and was counterbalanced within and across
participants. A schematic of the procedure is shown in Figure 1.

Single-feature imagination paradigm. For the final run, participants
were presented with a single cue per trial (the remaining three locations,
three persons, and three object names, not previously seen in the exper-
iment) and were asked to imagine the features in isolation. Each cue was
displayed for 4 s, during which time the participants were instructed to
imagine the location, person, or object in as much detail as possible.
Participants made a vividness rating for each trial (1-4 scale), and trials
were separated by the same jittered active fixation task as in the main
experiment (3-5 s in duration). One participant was unable to complete
this run due to time, resulting in N = 17 for this run.

Postscan measures. Following the scan, participants completed post-
scan ratings and descriptions for each cue set. Each of the 27 cue combi-
nations was presented, and participants were asked to provide a brief
description of what they imagined for each cue set. Descriptions were
recorded using a microphone. Next, participants were asked to make
ratings about the imagined events. First, participants were asked to
rate how consistently they imagined the event across the six runs (1-4
scale: 1, not consistent; 4, very consistent). Next, they rated how coherent
the event was, referring to how integrated the three features were in the
event (1-4 scale: 1, not very integrated; 4, very well integrated). Next,
they rated the plausibility of the imagined event by rating how easily the
elements of the event fit together (1-4 scale: 1, not very well; 4, extremely
well). Then, they rated how similar the imagined event was to an existing
memory (1-4 scale: 1, not at all similar; 4, same as a memory). Finally,
each of the nine cues was presented alone, and participants rated the
familiarity of each feature (1-4 scale: 1, not very familiar; 4, extremely
familiar) and how easily they could picture each feature (1-4 scale: 1, not
very easily; 4, extremely easily).

MRI setup and data acquisition

Stimuli were presented and responses were recorded using EPrime 2.0
software (Psychology Software Tools; RRID:SCR_009567). Stimuli were
projected onto a screen behind the MRI scanner, which was visible to the
participant via a mirror attached to the head coil. Participants made
responses using an MRI-compatible response box, placed under their
right hand. Participants were scanned in a 3.0 T Siemens MAGNETOM
Trio MRI scanner using a 12-channel head coil. High-resolution, gradi-
ent echo, multislice, T1-weighted scans (160 slices of 1 mm thickness;
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Figure 1.

Schematic of event imagination and single-feature imagination paradigms. On each trial of the eventimagination paradigm, participants were presented with the names of a familiar

person, location, and object and were asked to imagine an event integrating these three features. They then made a vividness rating (scale of 1—4). Events were separated with a jittered, active
fixation period, which required participants to press a key indicating whether the arrow was pointing left or right. In the single-feature run, participants were presented with single cues
(nonoverlapping with the cues used in the event imagination paradigm) and were asked to imagine them and provide a vividness rating.

19.2 X 25.6 cm field of view) coplanar with the EPI scans as well as
whole-brain magnetization-prepared rapid acquisition gradient echo
(MP-RAGE) 3-D T1-weighted scans were acquired for anatomical local-
ization in the middle of the scanning session, between the third and
fourth functional runs. During the seven functional runs, T2*-weighted
EPIs sensitive to BOLD contrast were acquired. Images were acquired
using a two-shot gradient echo EPI sequence (22.5 X 22.5 cm field of
view with a 96 X 96 matrix size, resulting in an in-plane resolution of
2.35 X 2.35 mm for each of 35 3.5 mm axial slices with a 0.5 mm interslice
gap; repetition time, 2.0 s; echo time, 27 ms; flip angle, 62°).

Behavioral data analysis

Means and SDs for behavioral measures are reported. When measures
were collected for each feature type separately, ratings were compared
across feature categories using repeated-measures ANOVAs with one
repeated factor of cue type. Mauchly’s test of sphericity was used to test
the validity of the sphericity assumption, and, when violated, Greenhouse—
Geisser-corrected p values are reported. Post hoc comparisons were per-
formed using Bonferroni-corrected paired ¢ tests.

fMRI data analysis

Preprocessing. Functional images were converted into NIFTI-1 format,
reoriented to radiological orientation, and realigned to the mean image
of the first functional run using the 3dvolreg program in AFNI (Analysis
of Functional NeuroImages; Cox, 1996; RRID:SCR_005927). To retain
higher spatial resolution for multivariate pattern analyses, the data were
not spatially smoothed. Statistical analyses were first conducted on re-
aligned functional images in native EPI space. The MP-RAGE anatomical
scan was normalized to the Montreal Neurological Institute (MNI) space
using nonlinear symmetric normalization implemented in ANTS (Ad-
vanced Normalization Tools; RRID:SCR_004757) software (Avants et
al., 2008). This transformation was then applied to maps of statistical
results derived from native space functional images using ANTS to nor-
malize these maps for group analyses.

Searchlight multivoxel pattern analysis. Every imagination event across
the six runs was modeled using an 8 s SPM canonical hemodynamic
response model in a voxelwise general linear model (GLM) via the
3dDeconvolve program in AFNI. The GLM also included a single para-
metric regressor for the vividness ratings, and 12 nuisance regressors per
run to account for motion and physiological noise in the data using the
CompCor approach (Behzadi et al., 2007). This resulted in one GLM per
subject, each with 235 regressors (162 events, 1 parametric vividness
regressor, 72 nuisance regressors). The resultant 162 B-estimates for the

event imagination trials were then used as the input for multivoxel pat-
tern analyses (MVPAs).

To identify brain areas where patterns of activity distinguished be-
tween the features in each category (person, location, and object) or
between each unique event, we performed a series of four searchlight
analyses over the entire brain. Each analysis used a shrinkage discrimi-
nant analysis (SDA) as a classifier, a form of regularized linear discrimi-
nant analysis that can be applied to high-dimensional data that have
more variables (voxels) than observations (trials). With this method, the
estimates of the category means and covariances are shrunk toward zero
using James—Stein shrinkage estimators as a way to ensure the estimabil-
ity of the inverse covariance matrix and to reduce the mean squared error
when used for out-of-sample prediction (SDA package for R; Ahdesmiki
etal., 2014).

Each classifier used alocal 10-mm-radius spherical neighborhood that
surrounded a central voxel, resulting in an average of 175 voxels in the
searchlight. The classifiers were trained via leave-one-run-out cross-
validation on the B-coefficients estimated from each event imagination
trial. A separate classifier was trained on each of the location features,
person features, object features, and the conjunction of all three features
(i.e., each of the 27 unique event combinations) to determine which
voxels discriminate between the features of each type, regardless of the
other elements of the event, and which voxels distinguish each unique
event. The searchlight sphere was moved around the entire brain, exclud-
ing voxels falling outside a functional brain mask, creating a whole-brain
map of classification performance attributed to the central voxel of each
sphere. The code for the searchlight analyses is available at https://github.
com/bbuchsbaum/rMVPA/blob/master/R/searchlight.R.

Classifier performance was assessed using area under the curve (AUC),
where 0.5 corresponded to chance-level discrimination. Whole-brain
maps of AUC values were generated for each subject and each classifier.
These maps were spatially transformed to MNI space and analyzed with
voxelwise permutation ¢ tests. The Randomize function in FSL (Winkler
et al., 2014; RRID:SCR_002823) was used to perform nonparametric
one-sample t tests for each voxel, testing whether the classifier perfor-
mance was significantly above chance, using threshold-free cluster en-
hancement (TFCE; Smith and Nichols, 2009) to identify significant
clusters and maintain a familywise error (FWE) rate of p < 0.05. Ran-
domize uses nonparametric permutation testing rather than assuming a
Gaussian distribution, which has been demonstrated to be less prone to
type I errors than parametric fMRI analysis methods (Eklund et al.,
2016). TFCE computes a voxelwise score reflecting the strength of signal
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Figure 2.
object cues on both familiarity and imageability, but did not differ from one another.

(in this case, AUC) at a given voxel and the extent of contiguous voxels
demonstrating the same effect, without relying on the definition of an
absolute threshold. This method has been demonstrated to be more sen-
sitive than other voxelwise or clusterwise thresholding methods (Smith
and Nichols, 2009). FWE-corrected t maps were produced for each clas-
sifier, indicating which voxels were able to distinguish events based on
each feature.

Contrasting classifier performance. To compare performance across the
different classifiers, subtraction analyses were performed contrasting
classification by each cue type. For each contrast, whole-brain AUC maps
were subtracted at the subject level. The resulting maps were tested
against zero at the group level, using FSL Randomize to perform non-
parametric one-sample ¢ tests. TFCE was used to identify significant
clusters maintaining a familywise error rate of p < 0.05. Resulting clus-
ters correspond to voxels in which classification was significantly higher
for a given feature compared with one of the other features.

Multifeature ROI definition. To define a more targeted set of areas that
represent the features making up the events in this paradigm, we used the
single-feature scanning run to define a set of ROIs selective for the fea-
ture categories (i.e., locations, people, and objects). Importantly, the
single-feature run used a separate set of cues from the event imagination
runs, which were still personally familiar and drawn from the same cat-
egories as the event imagination cues. In this run, however, cues were
presented singly, and participants were asked to imagine them in isola-
tion. Thus, the single-feature run was independent of the multifeature
event runs, allowing us to define regions of interest sensitive to the fea-
ture categories in an unbiased manner.

Similar to the searchlight MVPA procedure described above, we
trained SDA classifiers to discriminate the features, although in this case,
the classifiers were trained and tested to discriminate between feature
categories (person, object, and scene), rather than between specific items
(e.g., kitchen, bedroom, and office) within a category. The parameters of
the classifiers were the same as in the previous analyses, except that the
classifier was trained using five cross-validation folds derived from con-
tiguous blocks of trials within the run, since there was only one run of the
single-feature paradigm. This run contained 54 trials, comprising six
blocks of the same nine cues (three locations, three people, and three
objects). Each block consisted of nine trials in a random order, so that
each cue was presented once per block, and presentations were spaced
evenly throughout the run. The classifier was trained using leave-one-
block-out cross-validation, resulting in training on five blocks and test-
ing on the sixth. Accuracy was assessed for each feature category by
calculating the average AUC for discriminating that category from the
other two categories in each voxel, for each participant. To derive a map
of reliable classification performance at the group level, the spatially
normalized AUC maps were compared against chance (AUC = 0.5)
using one-sample ¢ tests. This procedure produced separate normalized
maps for location, person, and object features, representing the voxels
that were selective for these features.

Postscan ratings of familiarity and imageability by feature category for the features used in the event imagination runs. Location and person cues were rated significantly higher than

To create a set of ROIs that equally represented all three episodic
features, we selected the 1000 most significant voxels from each feature
category map based on ranking the t values of every voxel in the brain. We
then merged these voxels using a setwise union to create a combined
mask containing the set of voxels most able to discriminate the three
features. On average, for the top 1000 voxels for each category, the object
voxels had higher ¢ values than the location voxels (¢,995) = 3.831, p =
0.00013) but did not differ from the person voxels (¢(,99g) = 1.503, p =
0.133), and the person voxels had marginally higher ¢ values than the
location voxels (t,995) = 1.803, p = 0.072), although the overall means
and ranges were similar (location voxels: mean, 8.51; SD, 0.72; range,
7.70-11.68; person voxels: mean, 8.59; SD, 1.15; range, 7.23-12.37; ob-
ject voxels: mean, 8.66; SD, 1.01; range, 7.54—12.93). Note that these
values reflect how well, on average, these voxels were able to discriminate
that feature category from the other categories, and do not reflect dis-
crimination ability within categories.

Hippocampal ROI definition. T1-weighted structural scans were ana-
tomically segmented using Freesurfer automated cortical and subcortical
parcellation software (version 5.3; aparc.a2009s atlas; RRID:SCR_001847;
Fischl et al., 2002, 2004; Destrieux et al., 2010). To test hypotheses about the
hippocampus, for each subject, a mask of the left and right hippocampus was
computed based on the Freesurfer parcellation, and used to define the hip-
pocampal ROL.

Comparing classifier performance across event features. To compare
classification performance across features, we computed average classi-
fication accuracy (as measured by the area under the curve) within the
ROIs described above. Separate SDA classifiers were trained and tested
on each feature using only the voxels in the ROI, and summary measures
of performance were computed. For each ROI, we compared average
classifier performance across features using a repeated-measures ANOVA
with one factor of feature type, and follow-up paired ¢ tests, using the Bon-
ferroni correction for multiple comparisons.

To compare classification accuracy while varying the number of voxels
contributing to the classification, we performed separate classification
analyses based on subsets of voxels. For each event feature (object, per-
son, location), all voxels in the brain were ranked according to the
correlation-adjusted ¢ statistic (CAT score; Zuber and Strimmer, 2009),
indicating the voxels, that were the most informative in the training set.
Then, separate models were trained and tested on each feature, using
only the N highest ranked voxels, to control for the number of voxels
contributing to the classification results. We varied the voxel number by
powers of 2 (from 100 to 25600, and then used the whole brain) and
compared classifier performance as a function of voxel number and fea-
ture type using a 9 (voxel number) X 3 (feature type) repeated-measures
ANOVA, and follow-up Bonferroni-corrected paired t tests. Mauchly’s
test of sphericity was used to test the validity of the sphericity assumption,
and, when violated, Greenhouse—Geisser-corrected p values are reported.
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Regions significantly able to discriminate events based on location, person, and object features, as determined by MVPA searchlight classification analysis. Color intensity reflects

t values resulting from comparing the classification accuracy against chance. FWE-corrected, p << 0.05 [Figures 3-1 available at 10.1523/JNEUR0SCI.1638-17.2018.f3-1, 3-2 available at 10.1523/
JNEUR0SCI.1638-17.2018.f3-2, and 3-3 available at 10.1523/JNEUR0SCI.1638-17.2018.13-3, cluster tables (figures were made with BrainNet Viewer; Xia et al., 2013; RRID:SCR_009446)]. L, Left;

R, right.

Results
Behavioral results
In-scan vividness ratings of events were high [mean, 3.01; SD,
0.58 (on a scale where 1 is not vivid and 4 is extremely vivid)].
Since cues differed across subjects, it was not possible to examine
group-level differences in vividness relating to the individual
features. We could, however, examine the variance in vividness
ratings according to each feature category by grouping events
according to each feature within subject and calculating the vari-
ance in the vividness ratings for that feature category across the
group. If one feature consistently resulted in higher variability in
the vividness ratings, differences in that feature may have been
driving the vividness judgments for the events. This was not
found to be the case, as a repeated-measures ANOVA with one
factor of feature type found no main effect of feature type on
within-subject variance of vividness ratings (F, s, = 1.287,
p=0.288).

Vividness ratings of single features during the single-feature
run were high overall (mean, 3.50; SD, 0.37). Since this run pre-

sented single features, it was possible to compare vividness rat-
ings across the feature categories (location: mean, 3.54; SD, 0.44;
person: mean, 3.53; SD, 0.44; object: mean, 3.44; SD, 0.40). A
repeated-measures ANOVA with one factor of feature type re-
vealed no significant difference between the categories on vivid-
ness ratings (F, 5,y = 0.764, p = 0.474).

Mean postscan ratings of events revealed that events were gen-
erally rated as fairly consistently imagined, with good coherence
of the features, medium plausibility and low similarity to existing
memories (consistency: mean, 3.12; SD, 0.57; coherence: mean,
3.06; SD, 0.62; plausibility: mean, 2.43; SD, 0.59; similarity to
memory: mean, 1.49; SD, 0.35). The familiarity and imageability
of the individual features were also both rated highly on the 4
point scales (familiarity: mean, 3.32; SD, 0.46; imageability:
mean, 3.37; SD, 0.47). When compared across categories, repe-
ated-measures ANOVAs with one factor of feature type revealed
significant differences across the feature categories (imageability:
Fe, 54 = 11.979, p = 0.0001, M? = 0.20; familiarity: Foay =
12.118, p = 0.001, n*> = 0.22; Greenhouse-Geisser correction
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was applied for familiarity ANOVA, ¢ = L
0.655; Fig. 2). Post hoc Bonferroni-
corrected paired t tests revealed that in
both cases, the location and person fea-
tures were rated more highly than the
object features (familiarity: location vs
object, £y = 3.859, Peorreciea = 00068,
d = 0.85; person vs object, t,,, = 3.694,
Peorrected = 0.0054, d = 0.87; imageability:
location vs object, ,7) = 3.866, Peorrected =
0.0037, d = 0.91; person vs object, t,, =
3.646, Pegrrecea = 0.0060, d = 0.86), but
location and person features did not differ
(familiarity: location vs person, t,, =
1.299, Peorrectea = 0.634; imageability: lo-
cation vs person, t;7y = 1.067, P orrected =
0.903).

fMRI results

Classification of events by feature

To determine which areas of the brain
could distinguish events based on their
spatial context, we conducted a search-
light pattern classification analysis to
discriminate multifeature events based on
their locations. This analysis revealed a col-
lection of posterior regions able to reliably
classify events based on location informa-
tion (Fig. 3 and Fig. 3-1 available at 10.
1523/JNEUROSCI.1638-17.2018.f3-1). Regions included the ret-
rosplenial cortex, posterior cingulate cortex, precuneus, parahip-
pocampal cortex, left posterior hippocampus, angular gyrus,
occipital cortex, and the medial prefrontal cortex.

In contrast, when the searchlight classifier was trained and
tested on person features, a much smaller set of regions was found
to reliably distinguish between events (Fig. 3 and Fig. 3-2 avail-
able at 10.1523/JNEUROSCI.1638-17.2018.f3-2). Significant re-
gions were primarily along the cortical midline, including the
posterior cingulate cortex and the dorsal medial prefrontal cor-
tex, and also included the right lingual gyrus, left angular gyrus,
and left inferior parietal lobule.

The object feature classifier again revealed a smaller set of
regions than the location classifier, which could distinguish be-
tween events based on the included object (Fig. 3 and Fig. 3-3
available at 10.1523/J]NEUROSCI.1638-17.2018.f3-3). Regions
were primarily in the left parietal lobe including the left inferior
parietal lobule, left supramarginal gyrus, left angular gyrus, pos-
terior left superior temporal gyrus, and the precuneus.

Importantly, while these classifiers are separately trained on
the three features (location, person, and object), they all operated
on the same set of events, with the only difference being how the
events were labeled for each analysis, depending on which feature
was under study. Thus, to classify events according to one feature,
differences based on that feature must be uniquely discriminable
from other trialwise variations, such as those resulting from vari-
ations in the other features.

Figure 4.

R, right.

Classification of unique events

To determine which parts of the brain could distinguish each
unique event, formed by a unique combination of the location,
person, and object features, we conducted another searchlight
classification analysis treating each event as unique. Crucially, to
accurately distinguish these events from one another, the unique
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2.35 8

Regions significantly able to discriminate events based on the unique combination of features, as determined by
MVPA searchlight classification analysis. Color intensity reflects t values resulting from comparing the classification accuracy
against chance. FWE-corrected, p << 0.05 (Figure 4-1 available at 10.1523/JNEUR0SCI.1638-17.2018.f4-1, cluster table). L, Left;

conjunction of all three features had to be considered, resulting in
27 categories, corresponding to each feature combination. This
analysis revealed a set of areas able to distinguish the unique
feature combinations including the posterior cingulate cortex,
precuneus, supramarginal gyrus, left angular gyrus, posterior
middle temporal gyrus, left fusiform gyrus, and left middle fron-
tal and medial frontal gyri (Fig. 4 and Fig. 4-1 available at
10.1523/JNEUROSCI.1638-17.2018.f4-1).

Contrasting classifier performance

To directly compare classification performance across cue types,
we subtracted classification accuracy values in pairwise contrasts.
The only contrasts to yield significant clusters were those com-
paring location > object and location > person (Fig. 5 and Figs.
5-1 available at 10.1523/JNEUROSCI.1638-17.2018.f5-1 and 5-2
available at 10.1523/JNEUROSCI.1638-17.2018.f5-2). Classify-
ing events according to location compared with objects resulted
in significantly higher performance in a large posterior—medial
cluster including the lingual gyrus, areas of occipital cortex, ret-
rosplenial cortex, posterior cingulate cortex, and posterior para-
hippocampal cortex. Comparing classification based on location
with that based on person cues resulted in a small significant
cluster in the posterior cingulate cortex. The reverse contrasts of
person > location and object > location, as well as comparisons
between person and object cues, resulted in no significant clusters
corresponding to better classification performance based on ob-
ject or person features.

Determining multifeature ROI

To compare the classification of the events based on each of the
features in a set of regions representing all three features, we first
defined a set of regions in the brain that showed sensitivity to each
of the features, as described in Materials and Methods. An MVPA
classifier was used to determine the regions selective for each
feature (location, person, object) based on the independent data
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Regions with significantly higher classifier performance for discriminating events based on location, compared with object (left) and person (right). The reverse contrasts, and

comparisons between person and object features yielded no significant clusters. Color intensity reflects t values resulting from comparing the difference in classification accuracy against zero.
FWE-corrected, p << 0.05 (Figures 5-1available at 10.1523/INEUR0SCI.1638-17.2018.f5-1 and 5-2 available at 10.1523/JNEUR0SCI.1638-17.2018.f5-2, FWE-corrected cluster tables). L, Left; R, right.

L

Figure 6.
prefrontal cortex. L, Left; R, right.

from the single-feature run, which used a separate set of cues in
the same categories as the event imagination runs. Classification
analyses determined sets of regions that could accurately distin-
guish each feature category from the others. From each of these
sets of feature-sensitive regions, the 1000 most significant voxels
were masked and merged to create a multifeature ROI, represent-
ing the voxels most selective for all three features. This ROI in-
cluded alarge region in the posterior medial cortex, spanning the
posterior cingulate cortex, precuneus, and retrosplenial cortex
(Fig. 6). In addition, it included bilateral parahippocampal cortex
clusters, extending into the posterior hippocampus on the left,
bilateral angular gyrus clusters, and dorsomedial prefrontal cor-
tex clusters.

Comparison of classification performance across features

To quantitatively compare classifier performance across features,
we trained and tested classifiers based on each feature and com-
pared average classification performance in the multifeature
ROL. As shown in Figure 7, events were more accurately classified
based on location compared with person or object features. A
one-way repeated-measures ANOVA comparing classification
performance (as measured by the area under the curve) con-
firmed a main effect of feature type (F(, 54, = 16.18, p = 0.000016,

Regions included in the multifeature RO, based on merging the voxels that could most reliably discriminate each
feature from the others in the single-feature scan. Regions include the posterior cingulate cortex, precuneus, retrosplenial cortex,
bilateral angular gyrus, bilateral parahippocampal cortex extending into the posterior hippocampus on the left, and the medial

mn? = 0.31). While average classification
performance was significantly above
chance for all three features (location:
tiyy = 1040, Peorrecea = 0.000000052,
d = 2.45; person: t(;7) = 5.27, Porrected =
0.00037, d = 1.24; object: t,, = 3.96,
Peorrected = 0.006, d = 0.93), follow-up
Bonferroni-corrected paired ¢ tests dem-
onstrated that classification based on lo-
cation was significantly more accurate
than that based on object (t,,) = 6.94,
Peorrected = 0.000014, d = 1.63) and on
person (f(,7y = 3.55, Peorrected = 0.015,d =
0.84), while person and object classifica-
tion did not differ from one another
(t(17) = 1.59, Dcorrected = 079)

Based on our a priori questions about
representations in the hippocampus, we
also assessed classifier performance in a
hippocampal ROI There was no differ-
ence in classifier performance based on
feature (F, 3, = 0.31, p = 0.74), and
classification accuracy was not signifi-
cantly above chance for any of the fea-
tures (location: #,,) = 0.81, Pyncorrected =
0.43; person: £(;7y = 1.50, p,ncorrected = 0-15; object: £,y = 0.69,
Puncorrected = 0.50). Note that these nonsignificant differences are
not likely attributable to the smaller size of the hippocampal ROI,
since better classification performance based on location was also
observed in a parahippocampal cortex ROL.

Last, we compared classification accuracy varying the total
number of voxels used to train and test the classifier, to compare
classifier performance controlling for voxel number without con-
straining the analyses to particular ROIs. As shown in Figure 8,
classification according to location features consistently led to
better performance than classification according to person or
object features across varying voxel numbers. This difference was
confirmed by a repeated-measures ANOVA on classification per-
formance with factors of feature type and voxel number, which
found a significant main effect of feature (F, s, = 5.742, p =
0.007, n* = 0.119), a marginally significant interaction between
feature and voxel number (F 5306 = 2.629, p = 0.062, n° =
0.016; Greenhouse—Geisser correction, € = 0.163), and no signif-
icant main effect of voxel number (F(g 55y = 1.753, p = 0.180;
Greenhouse—Geisser correction, £ = 0.267). Follow-up compar-
isons indicated that the difference between location and person
classification was significant across all voxel numbers (¢,,, =

R
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Figure7. (lassification performance for each feature category in the multifeature ROI. Clas-
sification of the location of an event was significantly more accurate than classification of the
person or object included in the event. Mean classification was above chance (0.5) for all three
feature types.
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Figure8. (lassification performance for each feature category, by voxel number. Classifica-

tion performance is measured by AUC for the classification at each voxel number. The number of
voxels included in the classification was varied from 200 voxels to the whole brain.

4.161, Peorrecteda = 0.002,d = 0.98). The overall difference between
location and object classification did not survive Bonferroni cor-
rection (7 = 2.155, P orrectea = 0-14), but differences were most
apparent at 1600 and 3200 voxels (Fig. 8). There was no signifi-
cant difference between classification based on person and object
(t(17) = 0.734, Dcorrected > 099)

Discussion

This study provides evidence that location plays a prominent role
in the neural representation of events with overlapping spatial,
person, and object features. The influence of location in the neural
code is found throughout posterior—medial regions implicated in
processing scenes and events, including the parahippocampal cortex
and left posterior hippocampus, retrosplenial cortex, precuneus,
posterior cingulate cortex, and angular gyrus.

Imagined events that included familiar locations, people, and
objects were classified using searchlight MVPA to determine the
regions which can distinguish among events with overlapping
features. Classifying events according to location yielded the larg-
est set of areas, including the posterior cingulate cortex, retro-
splenial cortex, angular gyrus, precuneus, parahippocampal
cortex, and the left posterior hippocampus, consistent with re-
gions in the autobiographical and scene memory networks
(Zeidman et al., 2015; Hodgetts et al., 2016). Classification ac-
cording to person features revealed a smaller set of regions, in-
cluding the right lingual gyrus and medial prefrontal and parietal
regions, which have been associated with thinking about oneself
and others (Buckner et al., 2008; Andrews-Hanna et al., 2010).
Classification according to object features resulted in the smallest
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set of regions, consisting mainly of medial and lateral left parietal
regions, which may be associated with somatosensation or spatial
imagery (Andersen et al., 1997; Simon et al., 2002). Direct con-
trasts between these conditions revealed that classification accu-
racy was significantly higher for locations compared with objects
in a large set of posterior—medial regions, and compared with
people in a posterior cingulate cluster.

To compare classification accuracy for the three features in a
set of regions associated with all three event features, a multire-
gion ROI was independently defined based on single-feature
trials, producing a set of regions similar to autobiographical
memory networks (Svoboda et al., 2006; Spreng and Grady, 2010;
Schacter et al., 2012; Benoit and Schacter, 2015). In these areas,
classification of the events was above chance for all three feature
types, but was significantly more accurate when based on loca-
tion, indicating that location plays a primary role in the neural
representation of events. In addition, we compared classification
accuracy across the brain while varying the number of voxels
included in the classification, but not limiting the analysis to
particular ROIs, which also revealed that classification based on
location resulted in significantly higher accuracy than classifica-
tion based on person features and object features. This difference
was apparent for location compared with person classification
across all voxel numbers, and for location compared with object
in fewer instances. Thus, across our analyses, location effects con-
sistently play a dominant role in event representation.

Together, these findings suggest that spatial context is a
prominent defining feature of the neural representation of
events, consistent with behavioral findings showing that spatial
context influences the phenomenology of events (Arnold et al.,
2011; Robin and Moscovitch, 2014; Robin et al., 2016; Sheldon
and Chu, 2016; Hebscher et al., 2017). The parahippocampal,
retrosplenial, and posterior cingulate cortices and the precuneus
have been consistently implicated in studies of memory and per-
ception of scenes and spatial context (Epstein and Kanwisher,
1998; Epstein, 2008; Andrews-Hanna et al., 2010; Auger et al.,
2012; Szpunar et al., 2014; Horner et al., 2015; Zeidman et al.,
2015), and, along with the medial prefrontal cortex, are also parts
of the autobiographical memory network (Svoboda et al., 20065
Spreng et al., 2009; Spreng and Grady, 2010; St Jacques et al.,
2011; Rugg and Vilberg, 2013; Benoit and Schacter, 2015). These
results suggest that the role of these scene-related regions in the
autobiographical memory network relates to representing the
spatial context of events and memories.

These results are consistent with aspects of the scene construc-
tion theory, which states that spatial context provides a scaffold
on which remembered and imagined events are constructed
(Nadel, 1991; Hassabis and Maguire, 2007, 2009; Bird and Burgess,
2008; Maguire and Mullally, 2013). Location effects did not differ
significantly from both person and object across all analyses, and
there was evidence for significant classification of events based on
people and objects in certain regions, demonstrating that these
other event elements also contribute to the neural representation
of events and in some analyses and brain areas may play roles
comparable to those of location. Nonetheless, compared with the
other two features, location appeared to most consistently play a
role in determining the neural representation of events. The
prominence of location was evident despite the fact that familiar
people and the rich associations they can evoke (Liu et al., 2016)
should, in principle, make people as strong a defining feature of
events as location. This study limited the features under study to
location, person, and objects, which were chosen since they are
highly imageable, personally familiar features of events, although
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events also involve other features such as temporal context, emo-
tions, and thoughts.

Scene construction theory also stipulates that the dependence
of episodes on spatial representations relates to their mutual de-
pendence on the hippocampus (Hassabis and Maguire, 2007,
2009; Maguire and Mullally, 2013). In our results, the left poste-
rior hippocampus was included in the set of regions found to
discriminate events based on location, and in the multifeature
ROIL which demonstrated more accurate classification for events
based onlocation. Both of these effects, however, were also shown
in the larger set of scene-related regions including parahippocampal,
retrosplenial, and posterior cingulate cortices and precuneus.
Moreover, when the classification of events was assessed in a
hippocampal ROI, classification was not significantly above
chance for any of the features, and there were no significant dif-
ferences between location and the other features. Thus, while we
present evidence that location plays an important role in deter-
mining the neural representation of an event, it seems to do so by
virtue of a set of neocortical areas relating to the processing of
scene and episodic memory.

These findings are not necessarily incompatible with scene
construction theory; it is possible that the posterior—medial scene
regions represent the spatial contexts of events directly, while the
hippocampus may be instrumental for constructing or binding
these scenes and events (Eichenbaum et al., 1994; Olsen et al.,
2012; Maguire and Mullally, 2013; Yonelinas, 2013; Eichenbaum
and Cohen, 2014; Maguire et al., 2016). If the hippocampus
provides an index to neocortical representations (Teyler and Dis-
cenna, 1986; Moscovitch et al., 2016), patterns of hippocampal
activity may not directly reflect the features of the memory, in-
stead using a sparser indexing code (O’Reilly and Norman, 2002;
Rolls and Treves, 2011). Consistent with this interpretation are
previous findings that cortical areas such as the parahippocampal
cortex and perirhinal cortex show increased pattern similarity for
related stimuli in given categories, while the hippocampus shows
no differentiation or even decreased similarity for related repre-
sentations (LaRocque et al., 2013; Copara et al., 2014; Ezzyat and
Davachi, 2014; Dimsdale-Zucker et al., 2018), consistent with its
role in pattern separation, which orthogonalizes similar events.

In contrast, other studies have reported changes in hippocam-
pal pattern similarity based on features such as spatial or tempo-
ral context (Chadwick et al., 2011; Hsieh et al., 2014; Kyle et al.,
2015a; Nielson et al., 2015; Ritchey et al., 2015; Milivojevic et al.,
2016; Dimsdale-Zucker et al., 2018). Many of these studies, how-
ever, used visually presented stimuli rather than imagined ones,
which may have resulted in more consistent and easily discrim-
inable neural representations in the hippocampus. In addition,
since the cues in this study were highly familiar and based on
remote memory, they may have been less dependent on the hip-
pocampus, as is the case with navigation-related spatial memory
(Tengand Squire, 1999; Rosenbaum et al., 2000; Hirshhorn et al.,
2012). Furthermore, many of the studies above used higher-
resolution fMRI, allowing for the detection of pattern similarity
differences specific to hippocampal subfields, which may be ob-
scured in standard resolutions (Bakker et al., 2008; Schlichting et
al., 2014; Kyle et al., 2015b; Dimsdale-Zucker et al., 2018).

In summary, our study offers evidence that episodic events
are discriminable based on their location in posterior-medial
regions including the parahippocampal cortex, posterior hip-
pocampus, retrosplenial cortex, angular gyrus, posterior cingu-
late cortex, and the precuneus. In a set of regions consistent with
the autobiographical memory network, events were classified
most accurately based on their location compared with the per-
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son or object in the event. In conclusion, we propose that these
findings illustrate the importance of spatial context in determin-
ing the neural representation of complex episodic events, provid-
ing evidence for a neural mechanism of how spatial context
influences event memory. As such, our findings support scene
construction theory, which proposes that scenes underlie epi-
sodes by forming a scaffold on which events are constructed. Our
findings indicate, however, that other event elements, such as
people and objects, and a larger collection of brain areas exclusive
of the hippocampus, are also involved in event representation.
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